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Summary: 

A method for the determination of the tone quality of a classical guitar is described. It was 
applied to several high and low quality classical guitars. In comparison to bad tones, the timbre of 
good tones consists of stronger consonant (pleasant) and weaker dissonant (unpleasant) intervals. This 
empirical criterion of tone quality was named the 'rule of consonance-dissonance' (RC-D). RC-D was 
defined mathematically, and interpreted in physical and musical terms. RC-D allows a luthier to pursue 
systematically the tone quality during guitar production and to improve the instrument’s tone after its 
assembly. 

 
1.  INTRODUCTION 

 
Guitarmakers aim at achieving high tone quality of their instruments. However, in the 

literature not much has been said about the way tone quality should be measured and determined. For 
example, Cumpiano and Natelson [1] wrote about good tone of a guitar but they did not define the tone 
quality in physical terms. Richardson [2] discussed the important role of the low-order modes of 
vibration of the stringed musical instrument. These modes are responsible for much of the sound 
radiation at both low and high frequencies. Because low (high) frequency normal modes radiate only at 
low (high) frequencies this statement indicates that there is some correlation between the sound 
radiation of an instrument in low and high frequency range. It is logical that this correlation depends on 
(i) the design features, and (ii) the material of an instrument. Thus, the aim of our research was to 
answer what is the most important feature of a tone of a good guitar and how it can be distinguished 
from a bad tone. The basis for evaluation of our results was a definition of the consonance and 
dissonance between two tones by Olson [3] and partially by Sethares [4]. Two guitar samples were 
examined, consisting of four good and four extremely bad guitars, respectively. The paper describes 
the sound measurements of these two guitar samples and the analysis of tone quality differences. In 
addition, the frequency response function of a guitar which depends on mechanical properties of both 
top and back plates was related to its tonal quality and to the statement about importance of low-order 
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modes (see above). On the basis of the results a rule for determining guitar tone quality has been 
proposed, which we hope satisfies the criterion of objectivity. 
 

2.  METHODS 
 

2.1. DEFINITIONS 
 All measurements were performed in the same ordinary room without special sound 
insulation. This was thought to be sufficient because only the difference between the good and bad 
guitar tones was measured. The surrounding noise was at least 15 dB (0 dB ≡ 0.00002 Pa) below the 
sound pressure level (i.e., SPL) of any frequency of interest. The room temperature was ranging from 
18 to 22 °C and relative humidity from 40 to 55%. The differences in quality of guitar tones (see 
below) were noticeable during the whole experimentation, thus relatively large deviation in the 
temperature and humidity was not significant in this case. 

The following characteristics were judged subjectively by ear: The richness of the timbre of 
the tones of good guitars in comparison to the bad guitars was obvious. The duration of tones was 
longer for the good guitars. The good guitars enabled quality playing of quiet tones as well as loud 
tones, which was not the case for the bad guitars with bad dynamic capability. The buzz  tone for bad 
guitars was relatively frequent. The Wolf tone (undesired pulsation of sound intensity) [5] occurred for 
high tones for both tested groups of guitars. 

 
2.2. SUBJECT OF MEASUREMENTS 
  Three tones, "F" (fundamental frequency of 87.3 Hz, 6th string - 1st fret), "B" (123.5 Hz, 5th 
string - 2nd fret), and "g" (196.0 Hz, 3rd string), were subjected to analysis. The selection of these 
tones was guided by the properties of the A/D converter in the data acquisition board, which enabled 
only certain sample rates. 
 The plucked string vibrates with fundamental frequency and higher harmonic components, 
which are multiples of the fundamental frequency, but actually the transient sound of a guitar contains 
additional frequencies [3]. Our plan was to acquire a time record of each tone. Due to the nature of the 
additional analysis (see section 2.4.), the time of recording had to match an inverse value of the tone’s 
fundamental frequency. In such a case, the spacing between frequency lines of discrete tone spectrum 
is equal to the fundamental frequency of the tone [6]. Thus, each frequency line of the spectrum 
represents the magnitude of the corresponding harmonic component of the tone and the neighboring 
enharmonic components. To prevent errors due to eventually non-tuned strings, each analyzed tone 
was recorded with a frequency resolution of approximately 1 Hz and when necessary the string was 
tuned to match the fundamental and higher harmonic components in an optimal way. 
 The time of recording, sample rate, number of samples, fundamental frequency and frequency 
lines spacing of the transformed signal from time to frequency domain are shown in Table 1. One can 
see that the frequency lines spacing almost matches the actual fundamental frequencies of the 
corresponding tones. Because of relatively low frequency resolution the difference between the actual 
fundamental frequency and frequency lines spacing logically cannot result in a significant error even if 
the string was not perfectly tuned (which it was, see above). Namely, the difference between the actual 
fundamental frequency and frequency lines spacing is negligible in comparison to the frequency 
resolution for all analyzed tones (see Table 1). The actual frequency components (measured) are 
therefore always close to the theoretical frequencies which depend on frequency lines spacing. Because 
of this the energy of the actual frequency components is certainly captured at the theoretical 
frequencies. Recording of tones started automatically after string excitation. Three different periods 
between string excitation and start of recording were chosen: 0.2 s, 0.6 s and 1.0 s. These time periods 
were based on the intensity level of the tone of an average guitar, which rapidly decreases soon after 
the string excitation [3]. Most tones in musical compositions last less than one second, which is 
another reason for the chosen time constants. 
 The discrete amplitude spectrum S'(m⋅∆f) of the recorded tone was calculated with the Fast 
Fourier Transform (FFT) technique [7]: 
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where m = 1, 2 ... N/2, ∆f is frequency lines spacing, T time of recording, N number of samples, ∆t time 
interval between samples, f(n⋅∆t) a digital value of a record at point n and j is −1 . One-sided 
amplitude spectrum S(m⋅∆f) in units of Pascal is defined as [7]: 
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Finally, the average amplitude spectrum S m f( ⋅ ∆ )  (i.e., tone spectrum) of a certain tone is calculated 
from 10 single spectra: 
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Next, a tone spectrum was converted from Pascal (rms values) into dB(A) units (A-weighting, 0 
dB≡0.00002 Pa) [8]. Thus, a typical human response was taken into account. The first 15 frequency 
lines of each A-weighted tone spectrum were analyzed. For each of these frequency lines (an average 
of ten frequency lines) standard deviation was less than 3 dB(A). 

Unfortunately, such analysis results in some kind of mixture of harmonic and enharmonic 
frequency components (plus adjoining noise). To establish the size of this error, we compared the 
timbres of good and bad tones “F”, “B” and “g”, which were recorded 0.6 s after the string excitation 
as described in section 2.3. The time of recording was 0.256 s, thus the frequency resolution of the 
transformed signal with the FFT technique was 3.90625 Hz (N = 4096). The ratio, which expresses the 
relative content of the enharmonic components in the tone timbre is: 
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In this expression h indicates the sum of the first 15 harmonic components in dB units and e indicates 
the sum of the enharmonic components in dB units in a range from 0 Hz to the frequency of the 15th 
harmonic component. For the bad and for the good tones R always ranged between 0.05 and 0.2, which 
means that the relative content of the enharmonic components in the tone timbre is not so drastic. 
Namely, the number of frequency lines representing the enharmonic components is at least 20 times 
bigger than the number of the harmonic components. For example, if h=15×50 dB (15 harmonic 
components) and e=300×10 dB (300 enharmonic components) then R=0.2. The total sound pressure 
level of the 15 harmonic components is approximately 62 dB and of the 300 enharmonic components 
is approximately 35 dB which is an enormous difference in loudness [8]. In addition, the differences in 
R between the good and bad tones of the same pitch were always under 20%, which implies that 
“mixing” of frequency components is not such a fatal error. This is all the more true because the 
additional analysis (see section 2.4.) depends on the differences between the tone records rather than 
the tone records themselves. 
 
 
2.3. CONDITIONS OF TONE RECORDING 
 A device for string excitation was designed to ensure reproducibility of experiments, because 
the timbre of tone depends on the direction, force, point and way of string excitation [5]. A guitar was 
hung on two threads, which provided good isolation from surroundings. The top plate was always 
perpendicular, while the excited string was parallel to the floor. The experimental set-up, microphone 
position and a sketch of the string excitation device are shown in Fig. 1. The weight of the string 
excitation device fell always from the same point (a stop was designed) and bumped into the lever of 
the pick. Simultaneously, on the other side of this lever, the pick excited the string. Two bars ensured 
the positioning of the device with respect to the string in 4 axes (see Fig. 1). Figure 2 shows the 
measurement set-up. The microphone position in the near field was chosen according to Prasad et al. 
[9], since no special characteristics (sound power, etc.) in the far field were investigated. It should be 
noted here that the tone recording with a different microphone position (slightly larger distance from a 
guitar) would also be appropriate. The reason for our choice was that the analysis depended on the 
differences between the tone records rather than on the tone records themselves. 
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2.4. EVALUATION OF MEASUREMENTS  
 A simultaneous combination of two or more tones, that is pleasing to the ear is termed 
consonant. When a combination of tones is not pleasing to the ear, the sound is termed dissonant. The 
consonant combinations of tones have a ratio of fundamental frequencies of two integer numbers none 
of which is large; for example, 2:1, 3:2, 5:3, 4:3, etc. [3]. The spectrum of any of the three analyzed 
tones can be seen as a host of tones consisting of fundamental frequency only (without higher 
harmonic components), which are evenly spaced. On the other hand, the same spectrum can be seen as 
a host of intervals where each interval consists of two frequency lines (components). Analyzing the 
consonance and dissonance between the fundamental frequencies of two or more simultaneously 
played tones is physically the same as analyzing these two or more frequency components in a certain 
tone spectrum. Thus we can conclude that a definition of the consonance and dissonance between the 
tones by Olson [3] is suitable for the explanation of consonance and dissonance inside the tone 
spectrum. All frequency components in this spectrum should be considered as the fundamental and 
only fundamental frequencies of the simultaneously played tones. For example: if we simultaneously 
play three tones with the fundamental frequencies of 300 Hz, 400 Hz and 600 Hz (without overtones), 
we hear the octave (300 Hz : 600 Hz), perfect fifth (600 Hz : 400 Hz) and perfect fourth (400 Hz : 300 
Hz). 

The strings of the tested guitars were tuned according to the equal temperament scale 
appropriate for standard guitar tuning (a1=440 Hz was used) [3]. The next definition is essential for 
this analysis: when the difference in Hz between a certain frequency line and fundamental frequency of 
some scale tone (a1=440 Hz) is less than 1%, the frequency line can be considered as a pure tone and 
gets the name of the scale tone. For the tone “F”, the pure tones with sample spectra of good and bad 
tones are shown in Fig. 3. Note that A-weighted SPL of some frequency lines (components) differ by 
more than 10 dB(A). The pure tones for tones “B” and “g” are shown in Table 2. The pure tones 
actually indicate the fundamental frequencies of the available tones on the well tuned tested guitars. 
Thus, when a certain frequency component of the analyzed tone spectrum is not a pure tone, it 
automatically increases the dissonance of this spectrum. For example: Fig. 3 shows that the 2nd 
frequency component coincides with the tone “f” on the scale with a1= 440 Hz. The same goes for the 
3rd component, which gets the name “c1”. On contrary, the difference in frequency between the 7th 
component (612 Hz) and the nearest available tone “d#2” (622 Hz) is more than 1%, thus this 
component represents the dissonance in the “F” tone spectrum. Let it be noted again that each of the 15 
frequency components inside the tone spectrum is considered as a fundamental frequency of a certain 
tone. The effect of the 7th component (612 Hz) in a tone spectrum from Fig. 3 is similar to the effect 
where the first string which enables “d#2” (622 Hz - 10th fret) would be slightly out of tune according 
to the other strings. Despite the fact that the 14th and 7th frequency lines form a consonant interval 
(octave 2 : 1) inside a tone spectrum, they are considered as a dissonant interval, because the difference 
between them and the fundamental frequencies of any scale tone is bigger than 1% - they are not the 
pure tones.  

The 11th and 13th frequency lines (components) were excluded from the analysis of intervals 
for two reasons. First, in this analysis these components represented the dissonance, but according to 
[3] the interval 11: 13 is classified neither into the consonant nor into the dissonant group. Second, out 
of the 105 (15×14/2) intervals for the first 15 frequency lines, we considered 25 intervals, 19 of which 
are consonant. Thus, one interval more or less does not represent an important effect on the analysis. 
This is all the more true, because all comparisons of the tone spectra were made under the same 
procedure. 

To sum up, 4 frequency components (7th, 11th, 13th and 14th) represent dissonant portion of 
the tone spectrum because of the effect of so called “non-tuned strings”. Since 15 frequency 
components form a harmonic series, for the rest of 11 pure tones of each tone spectrum we can use the 
scale of just intonation [3], which employs frequency intervals represented by the ratios of the smaller 
integers of the harmonic series. From the above we can conclude that this scale is a good basis for the 
presented consonance/dissonance definition. 

The SPL of interval Lij(k), consisting of frequency lines i and j, is [8]: 
 
L k logij

L k L ki j( ) ( )( ) / ( ) /= ⋅ +10 10 1010 10 ,          (4) 
 
where Li(k) and Lj(k) are the A-weighted SPL of the first and the second frequency line of the interval 
ij, respectively, and k indicates one of the tones “F”, “B” or “g”. The 25 considered combinations of ij 
are shown in Table 3: the classification into the consonant and dissonant intervals was made according 
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to Fig. 4, which shows the consonance-dissonance characteristics for various interval ratios [3]. The 
limit between consonance and dissonance is represented by the order of merit = 6. 

The difference of Lij(k) for the good and bad tones of the same pitch yields the parameter 
∆Lij(k): 

 
∆Lij(k) = Lij (k: good guitar) - Lij (k: bad guitar).         (5) 
 
The following terms can now be defined: 
 
• The consonance (CG(k)) of a good tone k relative to a bad tone k, is defined as the sum of the 

consonant ∆Lij(k)  that are larger than 0. 
• The dissonance (DG(k)) of a good tone k relative to a bad tone k, is defined as the sum of the 

dissonant ∆Lij(k) that are larger than 0. 
• The consonance (CB(k)) of a bad tone k relative to a good tone k, is defined as the sum of the 

consonant ∆Lij(k) that are smaller than 0. 
• The dissonance (DB(k)) of a bad tone k relative to a good tone k, is defined as the sum of the 

dissonant ∆Lij(k) that are smaller than 0. 
 
Consonance and dissonance of sample good and bad tones are shown in Table 4. 
 

3. RESULTS AND DISCUSSION 
 

 Since each tone of bad and good guitars was recorded in three different periods after string 
excitation, 144 comparisons between good and bad tones were made, i.e.; 
• each good tone "F" with each bad tone "F" (four good guitars, four bad guitars and three different 

periods after string excitation results in 48 comparisons), 
• each good tone "B" with each bad tone "B" (48 comparisons), 
• each good tone "g" with each bad tone "g" (48 comparisons). 
For all comparisons, the following expression applied: 
 
 (CG(k) + CB(k)) >2⋅ (DG(k) +DB(k))         (6) 
 
This expression is named the 'rule of consonance-dissonance' (RC-D) and provides an objective 
criterion for distinguishing an extremely bad guitar tone from a good one. The difference between the 
quality of bad and good tested tones was drastic (see section 2.1.), thus the ‘rule of consonance-
dissonance’ is too rough for being applied without any modifications. We can see from expression (6) 
that the condition “is greater” will be fulfilled more easily when: CG is as large as possible, CB is as 
small as possible, DG is as small as possible and DB is as large as possible (mind that CB and DB are 
negative in the above definitions). According to this, an expression which indicates the relative quality 
of any guitar tone (presumably bad) in comparison to the presumably good guitar tone is: 
 
Q(k) = DG(k) + DB(k) - CB(k) - CG(k).         (7) 
 
If the presumably bad tone is really worse than the presumably good tone, then Q(k) is negative. 
Larger Q(k) indicates a better quality of the bad (i.e., tested) tone in comparison to the good tone. We 
can see from eq (7) that in the case of positive Q(k), the tested tone (presumably bad) is actually better 
than the presumably good tone, therefore the assumption about the relative quality of the two tones 
was wrong. 

The RC-D is based on some physical and musical facts (see section 2.4.), thus we assume that 
it applies to all guitar tones, not only to the three measured tones. To confirm that the measured 
differences in the tone spectra of good and bad guitars are explainable also by frequency response 
function (i.e., FRF) of a guitar, the following experiment was performed. Excitation of a guitar was 
performed by a mechanical impulse at the bridge and the response signal was a sound pressure at 1 m 
from the guitar [10]. Figure 5 shows a typical difference between FRFs corresponding to a bad and 
good guitar (see section 2 for guitar quality ratings). The first resonant peak in FRF is a result of 
interaction of the top board-air-back board triplet [11], these components being in fact the most 
important parts of guitar body [2]. In addition, this peak corresponds to a normal mode since for the 
resonant frequency response signal lags 90 degrees with respect to the input signal (not shown). One 
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can see that the amplitude of the first resonant peak in FRF is significantly higher and its damping is 
lower for the good guitar in comparison to the bad one. We can conclude with high certainty that under 
the given circumstances (the conditions of testing [10]) the first resonant peak in FRF of a guitar is an 
appropriate criterion for its tonal quality. This is reasonable because a relatively large amplitude and 
relatively low damping of this peak indicate a relatively strong and low damped acoustic response 
which is a feature of a good instrument. The performed experiment highlighted also the statement 
about importance of low-order modes (see section 1). It seems that the lowest radiating mode of a 
guitar (1st resonant peak in FRF) is important for its acoustic characteristics in all registers: Both 
higher and lower tones corresponding to the good guitar(s) were preferred in comparison to the tones 
of the bad guitar(s) (see section 2). An exact and physical explanation of a correlation between the FRF 
of a guitar and its tones is difficult [12, 13] and the most probable reason for this is a complicated 
modal behavior of an instrument [14]. 

Because the RC-D is based on the interval analysis, this is effective only when each of the 
considered 15 frequency components has some energy. If not so, we cannot speak about “loudness of 
interval”, but only about “loudness of pure frequency”. To ensure such conditions, the recording of 
tones was performed close to the guitars, where each of the first 15 frequency components had a 
perceptible portion. Finally, an average quality of the three tested tones "F", "B" and "g" is: 
 
Q Q Q Q /m = + +( ("F") ("B") ("g")) 3 .         (8) 
 
Any guitar whose quality is compared to a high quality guitar can be seen as a tested guitar with tested 
tones. Thus, Qm actually indicates the average tone quality of the tested guitar. This is based on our 
experiences that good and bad guitars have pretty equal quality of all tones in practice. We never 
encountered a guitar with one or more tones significantly alighted from other tones. Anyway, it is 
reasonable to calculate Qm for more than three tones, and they should represent the whole tone register 
of the guitar.  

 
4. CONCLUSION 

 
Objective determination of tone quality of a musical instrument is an important problem [15, 

16]. The proposed criterion for the relative quality of the guitar tone is a result of objective sound 
measurements of bad and good classical guitars. The criterion, the ‘rule of consonance-dissonance' 
(RC-D), was expressed in a mathematical form (see eq (6)) and interpreted in terms of the physical and 
musical theory (see section 2.4.). The essential difference between the bad and good timbre of a guitar 
tone is in the relative contributions of the consonant and dissonant combinations of frequency lines in 
the discrete amplitude spectrum of the tone. The described criterion includes not only the analysis of 
loudness but also the quality analysis of tones. We believe that the RC-D could be applied to all guitar 
tones, since RC-D allows a simple comparison of any two guitar tones of the same pitch (recorded 
under conditions described in sections 2.2. and 2.3.). Secondly, RC-D enables a systematic pursuing of 
tone quality during guitar production, and should also facilitate improvements of the instrument after 
its assembly. 
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TABLE 1 
 

Properties of recorded tones 
 

 tone "F" tone "B" tone "g" 
Time of recording (s) - T 0.011609 0.008 0.005 
Sampling frequency (kHz) - fS 44.1 32.0 25.6 
Number of samples - N 512 256 128 
Actual fundamental frequency (Hz) - fF 87.3 123.5 196.0 
Freq. lines spacing after frequency transformation (Hz) - ∆f 86.13 125.0 200.0 

 
 



______________________________________________________________________________ 8

 

 
 

Dv

STRING EXCITATION DEVICE:

EXPERIMENTAL SET: MICROPHONE POSITION:

1
 
weight
falling

2

3

4

5
6

78910(a)
10(b)11

nut

bridge
neck

microphone

thread

string excitation
device

bridge

bridgemicrophone
microphone

fingerboard

XV fret

string

bar

bar

35 mm 180 mm

X1

X2

X3

X4

string length (mm)
8.125D V = X1, X2, X3, X4: axes of

positioning (device - string) 

 
Figure 1: Guitar, microphone and the string excitation device. 1, the slot for adjusting the vertical 
position of the device. 2, weight. 3, stop for the weight. 4, the bar for adjusting the string excitation 
device parallel to the string. 5, string. 6, pick. 7, the bar for adjusting the distance between the string 
excitation device and the string. 8, guide for a bar. 9, stop for the lever of the pick. 10, lever of the pick 
[(a) before the string excitation, (b) after the string excitation]. 11, stand. 
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Figure 2: Measurement set-up. 
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Figure 3: Good and bad timbre of tone "F" recorded 0.2 s after string excitation. The names of the pure 
tones are in parentheses under the numbers of the corresponding frequency lines (components). 

 
 

 
 

TABLE 2 
 

The pure tones for tones “B” and “g” 
 

frequency line 1st 2nd 3rd 4th 5th 6th 7th 8th 
pure tone (for “B”) B b f#1 b1 d#2 f#2 / b2 
pure tone (for “g”) g g1 d2 g2 b2 d3 / g3 

frequency line 9th 10th 11th 12th 13th 14th 15th  
pure tone (for “B”) c#3 d#3 / f#3 / / a#3  
pure tone (for “g”) a3 b3 / d4 / / f#4  

# indicates pitch increase for a semitone  
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TABLE 3 
 

Considered intervals: combinations of ij. 
 consonant  consonant  consonant  dissonant 
 i j  i j  i j  i j 

octave 2 1 perfect fifth 6 4 major third 10 8 minor sixth 8 5 
octave 4 2 perfect fifth 9 6 major third 15 12 minor third 6 5 
octave 6 3 perfect fifth 12 8 perfect fourth 4 3 minor seventh 9 5 
octave 8 4 major sixth 5 3 perfect fourth 8 6 major tone 9 8 
octave 10 5 major sixth 10 6 perfect fourth 12 9 major seventh 15 8 
octave 12 6 major sixth 15 9    “octave” 14 7 

perfect fifth 3 2 major third 5 4       
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Figure 4: Consonance-dissonance characteristic for various interval ratios [3] 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 4 
 

Consonance and dissonance of good and bad tones 
 
  "F"   "B"   "g"  
 0.2 s 0.6 s 1.0 s 0.2 s 0.6 s 1.0 s 0.2 s 0.6 s 1.0 s 
CG(k); dBA 97.5 99.0 123.7 159.7 174.4 198.3 62.2 45.3 13.2 
DG(k); dBA 3.9 7.6 13.0 8.2 7.4 1.8 16.3 15.8 0.0 
CB(k); dBA -30.1 -22.5 -16.8 -8.9 -3.5 -2.4 -6.2 -4.3 -15.7 
DB(k); dBA -20.2 -23.6 -23.6 -10.8 -10.1 -23.9 -1.2 -6.4 -7.3 
 
 
 
 
 
 
 
 
 
 
 
 



______________________________________________________________________________ 12

 
 
 
 
 
 
 
 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

80 120 160 200 240 280 320 360 400 440 480

Frequency (Hz)

FR
F

(P
a/

m
s-2

)

 bad guitar
 good guitar

 
Figure 5: FRF for a bad and good guitar. 


